We study a continuous-time random walk, $X$, on $\mathbb{Z}^d$ in anenvironment of dynamic random conductances taking values in $(0, \infty)$. Weassume that the law of the conductances is ergodic with respect to space-timeshifts. We prove a quenched invariance principle for the Markov process $X$under some moment conditions on the environment. The key result on thesublinearity of the corrector is obtained by Moser's iteration scheme.
展开▼
机译:我们研究了在动态随机电导为$(0,\ infty)$的情况下,在$ \ mathbb {Z} ^ d $上的连续时间随机游走$ X $。我们假设电导律在时空上是遍历人体的。我们证明了在环境的某些时刻条件下,马尔可夫过程$ X $的淬灭不变性原理。 Moser的迭代方案获得了校正器次线性度的关键结果。
展开▼